首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   652篇
  免费   62篇
  2021年   5篇
  2020年   5篇
  2019年   8篇
  2018年   4篇
  2017年   5篇
  2016年   12篇
  2015年   28篇
  2014年   20篇
  2013年   37篇
  2012年   35篇
  2011年   37篇
  2010年   24篇
  2009年   21篇
  2008年   32篇
  2007年   30篇
  2006年   28篇
  2005年   47篇
  2004年   28篇
  2003年   30篇
  2002年   20篇
  2001年   8篇
  2000年   9篇
  1999年   9篇
  1998年   13篇
  1997年   6篇
  1996年   4篇
  1995年   9篇
  1994年   10篇
  1993年   18篇
  1992年   12篇
  1991年   14篇
  1990年   14篇
  1989年   20篇
  1988年   7篇
  1987年   7篇
  1986年   7篇
  1985年   7篇
  1984年   7篇
  1983年   4篇
  1982年   4篇
  1981年   6篇
  1980年   7篇
  1979年   7篇
  1977年   5篇
  1976年   4篇
  1973年   3篇
  1972年   3篇
  1971年   5篇
  1963年   4篇
  1962年   3篇
排序方式: 共有714条查询结果,搜索用时 62 毫秒
11.
The downstream process development of novel antibodies (Abs) is often challenged by virus filter fouling making a better understanding of the underlying mechanisms highly desirable. The present study combines the protein characterization of different feedstreams with their virus filtration performance using a novel high throughput filtration screening system. Filtration experiments with Ab concentrations of up to 20 g/L using either low interacting or hydrophobically interacting pre-filters indicate the existence of two different fouling mechanisms, an irreversible and a reversible one. At the molecular level, size exclusion chromatography revealed that the presence of large amount of high molecular weight species—considered as irreversible aggregates—correlates with irreversible fouling that caused reduced Ab throughput. Results using dynamic light scattering show that a concentration dependent increase of the mean hydrodynamic diameter to the range of dimers (17 nm at 20 g/L) together with a negative DLS interaction parameter kD (−18 mL/g) correlate with the propensity to form reversible aggregates and to cause reversible fouling, probably by a decelerated Ab transport velocity within the virus filter. The two fouling mechanisms are further supported by buffer flush experiments. Finally, concepts for reversible and irreversible fouling mechanisms are discussed together with strategies for respective fouling mitigation. © 2019 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2776, 2019.  相似文献   
12.
13.
Sarcolemmal membrane-associated protein (SLMAP) is a tail-anchored protein involved in fundamental cellular processes, such as myoblast fusion, cell cycle progression, and chromosomal inheritance. Further, SLMAP misexpression is associated with endothelial dysfunctions in diabetes and cancer. SLMAP is part of the conserved striatin-interacting phosphatase and kinase (STRIPAK) complex required for specific signaling pathways in yeasts, filamentous fungi, insects, and mammals. In filamentous fungi, STRIPAK was initially discovered in Sordaria macrospora, a model system for fungal differentiation. Here, we functionally characterize the STRIPAK subunit PRO45, a homolog of human SLMAP. We show that PRO45 is required for sexual propagation and cell-to-cell fusion and that its forkhead-associated (FHA) domain is essential for these processes. Protein-protein interaction studies revealed that PRO45 binds to STRIPAK subunits PRO11 and SmMOB3, which are also required for sexual propagation. Superresolution structured-illumination microscopy (SIM) further established that PRO45 localizes to the nuclear envelope, endoplasmic reticulum, and mitochondria. SIM also showed that localization to the nuclear envelope requires STRIPAK subunits PRO11 and PRO22, whereas for mitochondria it does not. Taken together, our study provides important insights into fundamental roles of the fungal SLMAP homolog PRO45 and suggests STRIPAK-related and STRIPAK-unrelated functions.  相似文献   
14.
The response of forest ecosystems to increased atmospheric CO2 is constrained by nutrient availability. It is thus crucial to account for nutrient limitation when studying the forest response to climate change. The objectives of this study were to describe the nutritional status of the main European tree species, to identify growth‐limiting nutrients and to assess changes in tree nutrition during the past two decades. We analysed the foliar nutrition data collected during 1992–2009 on the intensive forest monitoring plots of the ICP Forests programme. Of the 22 significant temporal trends that were observed in foliar nutrient concentrations, 20 were decreasing and two were increasing. Some of these trends were alarming, among which the foliar P concentration in F. sylvatica, Q. Petraea and P. sylvestris that significantly deteriorated during 1992–2009. In Q. Petraea and P. sylvestris, the decrease in foliar P concentration was more pronounced on plots with low foliar P status, meaning that trees with latent P deficiency could become deficient in the near future. Increased tree productivity, possibly resulting from high N deposition and from the global increase in atmospheric CO2, has led to higher nutrient demand by trees. As the soil nutrient supply was not always sufficient to meet the demands of faster growing trees, this could partly explain the deterioration of tree mineral nutrition. The results suggest that when evaluating forest carbon storage capacity and when planning to reduce CO2 emissions by increasing use of wood biomass for bioenergy, it is crucial that nutrient limitations for forest growth are considered.  相似文献   
15.

Background

Rigorous study of mitochondrial functions and cell biology in the budding yeast, Saccharomyces cerevisiae has advanced our understanding of mitochondrial genetics. This yeast is now a powerful model for population genetics, owing to large genetic diversity and highly structured populations among wild isolates. Comparative mitochondrial genomic analyses between yeast species have revealed broad evolutionary changes in genome organization and architecture. A fine-scale view of recent evolutionary changes within S. cerevisiae has not been possible due to low numbers of complete mitochondrial sequences.

Results

To address challenges of sequencing AT-rich and repetitive mitochondrial DNAs (mtDNAs), we sequenced two divergent S. cerevisiae mtDNAs using a single-molecule sequencing platform (PacBio RS). Using de novo assemblies, we generated highly accurate complete mtDNA sequences. These mtDNA sequences were compared with 98 additional mtDNA sequences gathered from various published collections. Phylogenies based on mitochondrial coding sequences and intron profiles revealed that intraspecific diversity in mitochondrial genomes generally recapitulated the population structure of nuclear genomes. Analysis of intergenic sequence indicated a recent expansion of mobile elements in certain populations. Additionally, our analyses revealed that certain populations lacked introns previously believed conserved throughout the species, as well as the presence of introns never before reported in S. cerevisiae.

Conclusions

Our results revealed that the extensive variation in S. cerevisiae mtDNAs is often population specific, thus offering a window into the recent evolutionary processes shaping these genomes. In addition, we offer an effective strategy for sequencing these challenging AT-rich mitochondrial genomes for small scale projects.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1664-4) contains supplementary material, which is available to authorized users.  相似文献   
16.
17.
Bioprocess and Biosystems Engineering - The production of microbial protein in the form of yeast grown on lignocellulosic sugars and nitrogen-rich industrial residues is an attractive approach for...  相似文献   
18.
19.
The impact of temporal changes in habitat availability and land use on the present genetic diversity of the grassland katydid species Metrioptera roeselii was investigated in an extensively used agricultural landscape (Lahn-Dill-Bergland, Germany) based on six microsatellite loci. By integrating spatial and temporal dimensions, this study contrasts to conventional approaches that usually record landscape changes at discrete points in time. Molecular data suggest little geographical substructuring of the species. Nevertheless, time-dependent effects on genetic diversity in terms of observed heterozygosity and allelic richness within subpopulations were detected by general linear models (GLM), explaining up to 82 and 13%, respectively. The results indicated that allelic richness was significantly reduced with higher rates of land-use change. Contrastingly, the level of heterozygosity even increased with increasing land-use change, if this rate increase was accompanied by a reduction in grassland amount, while with an increase of grassland amount the level of heterozygosity remained similar. Furthermore, depending on the study site, heterozygosity was differently affected by grassland age of sampled patches and of the surrounding. This is presumably induced by contrasting levels of heterozygosity in combination with differing modes of dispersal due to habitat availability and site-specific matrix effects. The loss of genetic diversity due to frequent land-use change might result in a reduced ability to adapt to landscape change, which is even more relevant in intensively used agricultural landscapes and in the course of climate change.  相似文献   
20.
The dynamics and performance of soil biota during forest rotation were studied in monoculture beech stands forming a chronosequence of four different age-classes(30,62,111,153 yr).Biomass was monitored in major groups of microflora,microfauna,mesofauna,and macrofauna.Resource availability(litter layer,soil organic mater),biomass of the two dominant decomposer groups(microflora,earthworms)as well as the biomass of mesofauna and microfauna were found to remain quite stable during forest succession.Nevertheles...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号